Supervised Composite Kernel Locality Preserving Projection Feature Extraction for Hyperspectral Image Classification
نویسنده
چکیده
Locally preserving projection (LPP) does not take advantage of the spatial correlation of pixels in the image, and the pixels are considered as independent pieces of information. In this paper, a kernel based manifold learning feature extraction method which considers spatial relationship of neighboring pixels, called supervised composite kernel locality preserving projection (SCKLPP), is proposed for hyperspectral image feature extraction. The spatial information and spectral information from original hyperspectral image are combined using composite kernels weight matrix. The nearest neighbor graph is created with the prior class-label information of samples. Experimental results on AVIRIS data set show that the SCKLPP can not only efficiently reduce the dimensionality but also achieve higher accuracies. In addition, the proposed method opens a new field for future developments in which spatial information can be easily integrated into the feature extraction stage. Keywords-feature extraction; dimensionality reduction; locally preserving projection; composite kernel; hyperspectral image classification
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملComposite Kernel Local Angular Discriminant Analysis for Multi-Sensor Geospatial Image Analysis
With the emergence of passive and active optical sensors available for geospatial imaging, information fusion across sensors is becoming ever more important. An important aspect of single (or multiple) sensor geospatial image analysis is feature extraction — the process of finding “optimal” lower dimensional subspaces that adequately characterize class-specific information for subsequent analys...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کامل